5 research outputs found

    The Case for Intelligent Propulsion Control for Fast Engine Response

    Get PDF
    Damaged aircraft have occasionally had to rely solely on thrust to maneuver as a consequence of losing hydraulic power needed to operate flight control surfaces. The lack of successful landings in these cases inspired research into more effective methods of utilizing propulsion-only control. That research demonstrated that one of the major contributors to the difficulty in landing is the slow response of the engines as compared to using traditional flight control. To address this, research is being conducted into ways of making the engine more responsive under emergency conditions. This can be achieved by relaxing controller limits, adjusting schedules, and/or redesigning the regulators to increase bandwidth. Any of these methods can enable faster response at the potential expense of engine life and increased likelihood of stall. However, an example sensitivity analysis revealed a complex interaction of the limits and the difficulty in predicting the way to achieve the fastest response. The sensitivity analysis was performed on a realistic engine model, and demonstrated that significantly faster engine response can be achieved compared to standard Bill of Material control. However, the example indicates the need for an intelligent approach to controller limit adjustment in order for the potential to be fulfilled

    A Risk Assessment Architecture for Enhanced Engine Operation

    Get PDF
    On very rare occasions, in-flight emergencies have occurred that required the pilot to utilize the aircraft's capabilities to the fullest extent possible, sometimes using actuators in ways for which they were not intended. For instance, when flight control has been lost due to damage to the hydraulic systems, pilots have had to use engine thrust to maneuver the plane to the ground and in for a landing. To assist the pilot in these situations, research is being performed to enhance the engine operation by making it more responsive or able to generate more thrust. Enabled by modification of the propulsion control, enhanced engine operation can increase the probability of a safe landing during an inflight emergency. However, enhanced engine operation introduces risk as the nominal control limits, such as those on shaft speed, temperature, and acceleration, are exceeded. Therefore, an on-line tool for quantifying this risk must be developed to ensure that the use of an enhanced control mode does not actually increase the overall danger to the aircraft. This paper describes an architecture for the implementation of this tool. It describes the type of data and algorithms required and the information flow, and how the risk based on engine component lifing and operability for enhanced operation is determined

    A High-Fidelity Simulation of a Generic Commercial Aircraft Engine and Controller

    No full text
    corecore